metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu,^a* Da-Qi Wang^b and Ai-Zhen Liu^a

^aDepartment of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.003 Å R factor = 0.028 wR factor = 0.067 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(ethylenediammonium) tris(pyridine-2,6-dicarboxylato- $\kappa^3 O, O', N$)cadmium(II) hexahydrate

In the title complex, $(C_2H_{10}N_2)_2[Cd(C_7H_3NO_4)_3]\cdot 6H_2O$, the Cd^{II} atom is nine-coordinated by three pyridine-2,6-dicarboxylate ligands *via* six O atoms and three N atoms in a distorted tricapped trigonal prismatic structure. A crystallographic twofold rotation axis passes through the Cd atom and three atoms of one pyridine ring, *viz*. N, the C in the *p*position and its attached H atom. The pyridine-2,6-dicarboxylate ligands, ethylenediammonium cations and uncoordinated water molecules contribute to the formation of intermolecular hydrogen bonds, forming a three-dimensional network.

Comment

The title compound, (I), consists of a $[Cd(C_7H_3NO_4)_3]^{4-}$ anion, two $(H_3NCH_2CH_2NH_3)^{2+}$ cations and six uncoordinated water molecules. The Cd^{II} atom is nine-coordinated by three pyridine-2,6-dicarboxylate ligands [denoted by L_1 , L_2 and L_1^i ; symmetry code: (i) 2 - x, $y, \frac{1}{2} - z$], *via* six O atoms and three N atoms (Fig. 1). The coordination geometry around Cd corresponds to a distorted tricapped trigonal prism, with the capping positions occupied by atom N2 of L_2 , O1 of L_1 and O1ⁱ of L_1^i .

A crystallographic twofold rotation axis passes through the Cd atom and three atoms of ligand L2, viz. N2, C11 and its attached H atom H5. In the ninefold coordination, there are three unique Cd–O distances and two unique Cd–N distances; these are Cd1–O1 = 2.5408 (15) Å, Cd1–O3 = 2.5225 (15) Å, Cd1–O5 = 2.5671 (15) Å, Cd1–N1 = 2.4194 (17) Å and Cd1–N2 = 2.397 (2) Å. The dihedral angles between the two pyridine rings of L_1 and L_2 , L_1 and L_1^i , L_2 and L_1^i are 83.0 (6), 91.5 (6) and 97.0 (6)°, respectively.

All NH groups of the cation and all OH groups of uncoordinated water molecules, together with all O atoms of the pyridine-2,6-dicarboxylate ligands, contribute to the formation of intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming a three-dimensional network (Table 1 and Fig. 2).

Received 23 August 2004 Accepted 1 September 2004 Online 4 September 2004

 \bigcirc 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

Cd(NO₃)₂·6H₂O (1 mmol) was dissolved in distilled water (20 ml). To this solution was added dropwise, at 333 K, an aqueous mixture (30 ml) of L_1 (2 mmol) and ethylenediamine (2 mmol). The mixture was stirred for 4 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and allowed to stand in air for about 1.5 months. Large colourless block-like crystals of (I) were obtained. Analysis calculated for $C_{25}H_{41}CdN_7O_{18}$: C 35.74, H 4.92, N 11.67%; found: C 35.58, H 4.81, N 11.55%.

Mo Ka radiation

reflections

 $\theta = 2.4-26.6^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$

T = 298 (2) K Block, colourless $0.40 \times 0.30 \times 0.15$ mm

 $R_{\rm int}=0.033$

 $\theta_{\rm max} = 28.3^{\circ}$

 $h = -21 \rightarrow 20$

 $k = -13 \rightarrow 12$

 $l = -23 \rightarrow 25$

refinement

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Cell parameters from 5899

3930 independent reflections 2680 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.035P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

Crystal data

$(C_2H_{10}N_2)_2[Cd(C_7H_3NO_4)_3]\cdot 6H_2O$
$M_r = 840.05$
Orthorhombic, Pbcn
a = 16.250 (3) Å
b = 10.0614 (15) Å
c = 20.021 (3) Å
$V = 3273.4 (9) \text{ Å}^3$
Z = 4
$D_x = 1.705 \text{ Mg m}^{-3}$
Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.751, T_{\max} = 0.895$

19 430 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.067$ S = 0.953930 reflections 314 parameters

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N3-H6···O8 ⁱ	0.95 (3)	1.86 (3)	2.801 (3)	168 (2)
$N3-H7\cdots O1^{ii}$	0.91 (3)	1.92 (3)	2.823 (3)	176 (2)
N3-H8···O7 ⁱⁱⁱ	0.88 (3)	2.01 (3)	2.852 (3)	160 (2)
$N4-H13\cdots O9^{iv}$	0.88 (3)	2.31 (3)	2.912 (3)	126 (2)
$N4-H14\cdots O6^{v}$	0.83 (3)	1.98 (3)	2.779 (3)	162 (3)
$N4-H15\cdots O1^{ii}$	0.83 (3)	2.37 (3)	3.126 (3)	151 (2)
$O7-H16\cdots O2^{v}$	0.864 (10)	1.875 (12)	2.723 (3)	167 (3)
$O7-H17\cdots O6^{ii}$	0.867 (10)	2.150 (18)	2.940 (2)	151 (3)
$O8-H18\cdots O4^{vi}$	0.874 (10)	1.972 (13)	2.819 (2)	163 (3)
O8−H19···O3 ^{vii}	0.876 (10)	1.804 (13)	2.661 (2)	165 (3)
$O9-H20\cdots O7^{viii}$	0.861 (10)	2.060 (11)	2.919 (3)	175 (3)
O9−H21···O5 ^{vii}	0.872 (10)	1.972 (13)	2.810 (2)	161 (3)

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, z; (ii) x - 1, y, z; (iii) x, 1 + y, z; (iv) x, 1 - y, $z - \frac{1}{2}$; (v) 1 - x, 1 - y, -z; (vi) $x - \frac{1}{2}$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (vii) 1 - x, y, $\frac{1}{2} - z$; (viii) x, 1 - y, $\frac{1}{2} + z$.

The water O-H distances were restrained to 0.90 (1) Å and the $U_{\rm iso}({\rm H})$ values were allowed to refine. The amine H atoms were located in a difference Fourier synthesis and refined isotropically. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å and $U_{\rm iso}({\rm H}) = xU_{\rm eq}({\rm C})$, with x in the range 0.8–1.4.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve

Figure 1

The structure of (I). Atoms of the asymmetric unit are labelled. Unlabelled atoms are related to their corresponding labelled atoms by $(2 - x, y, \frac{1}{2} - z)$. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

The crystal packing of (I), showing the $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bond interactions as dashed lines. H atoms have been omitted for clarity.

structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1997). *SMART*, *SAINT* and *SHELXTL*. Versions 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.